11 research outputs found

    Distributed Control Systems for a Wastewater Treatment Plant: Architectures and Advanced Control Solutions

    Get PDF
    This chapter is focused on the development and implementation of a distributed and hierarchized control system for the wastewater treatment plant (WTP) Calafat, Romania. The primary control loops for both treatment lines (water and activated sludge) are developed and analyzed. Also, the distributed control system (DCS) architecture of the wastewater treatment plant is presented, and the advantages of the proposed control structure are highlighted. In order to increase the performance of the overall control system, some advanced control solutions are investigated. More precisely, multivariable adaptive and robust control algorithms are proposed for the activated sludge bioprocess. Several realistic simulation experiments are performed, and the obtained results are analyzed

    A Compact IIoT System for Remote Monitoring and Control of a Micro Hydropower Plant

    No full text
    Remote monitoring and operation evaluation applications for industrial environments are modern and easy means of exploiting the provided resources of specific systems. Targeted micro hydropower plant functionalities (such as tracking and adjusting the values of functional parameters, real-time fault and cause signalizing, condition monitoring assurance, and assessments of the need for maintenance activities) require the design of reliable and efficient devices or systems. The present work describes the design and implementation procedure of an Industrial Internet of Things (IIoT) system configured for a basic micro hydropower plant architecture and assuring simple means of customization for plant differences in structure and operation. The designed system features a set of commonly used functions specific to micro hydropower exploitation, providing maximum performance and efficiency

    A Compact IIoT System for Remote Monitoring and Control of a Micro Hydropower Plant

    No full text
    Remote monitoring and operation evaluation applications for industrial environments are modern and easy means of exploiting the provided resources of specific systems. Targeted micro hydropower plant functionalities (such as tracking and adjusting the values of functional parameters, real-time fault and cause signalizing, condition monitoring assurance, and assessments of the need for maintenance activities) require the design of reliable and efficient devices or systems. The present work describes the design and implementation procedure of an Industrial Internet of Things (IIoT) system configured for a basic micro hydropower plant architecture and assuring simple means of customization for plant differences in structure and operation. The designed system features a set of commonly used functions specific to micro hydropower exploitation, providing maximum performance and efficiency

    A Configurable Monitoring, Testing, and Diagnosis System for Electric Power Plants

    No full text
    The specific equipment, installation and machinery infrastructure of an electric power system have always required specially designed data acquisition systems and devices to ensure their safe operation and monitoring. Besides maintenance, periodical upgrade must be ensured for these systems, to meet the current practical requirements. Monitoring, testing, and diagnosis altogether represent key activities in the development process of electric power elements. This work presents the detailed structure and implementation of a complex, configurable system which can assure efficient monitoring, testing, and diagnosis for various electric power infrastructures, with proven efficiency through a comprehensive set of experimental results obtained in real running conditions. The developed hardware and software implementation is a robust structure, optimized for acquiring a large variety of electrical signals, also providing easy and fast connection within the monitored environment. Its high level of configurability and very good price–performance ratio makes it an original and handy solution for electric power infrastructures

    Robust Estimation-Based Control Strategies for Induction Motors

    No full text
    This work proposes a realistic solution to the control problem of sensorless induction motors. Due to some important aspects related to their construction and reliability, the induction motors are extensively used in many modern industrial applications. Considering that the system is facing the lack of hardware sensors, the proposed complex control strategies are based on the estimation of unavailable system variables and parameters. In order to control the rotor speed, two robust control strategies are proposed: a modified super-twisting adaptive technique and a model predictive technique. The tests performed under several practical assumptions show that the closed loop behaviour of the system is adequate, and the output variable follows the imposed time varying reference, despite the considered uncertainties and disturbances acting on the process

    Improvement of PMSM Sensorless Control Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent

    No full text
    The field-oriented control (FOC) strategy of a permanent magnet synchronous motor (PMSM) in a simplified form is based on PI-type controllers. In addition to their low complexity (an advantage for real-time implementation), these controllers also provide limited performance due to the nonlinear character of the description equations of the PMSM model under the usual conditions of a relatively wide variation in the load torque and the high dynamics of the PMSM speed reference. Moreover, a number of significant improvements in the performance of PMSM control systems, also based on the FOC control strategy, are obtained if the controller of the speed control loop uses sliding mode control (SMC), and if the controllers for the inner control loops of id and iq currents are of the synergetic type. Furthermore, using such a control structure, very good performance of the PMSM control system is also obtained under conditions of parametric uncertainties and significant variations in the combined rotor-load moment of inertia and the load resistance. To improve the performance of the PMSM control system without using controllers having a more complicated mathematical description, the advantages provided by reinforcement learning (RL) for process control can also be used. This technique does not require the exact knowledge of the mathematical model of the controlled system or the type of uncertainties. The improvement in the performance of the PMSM control system based on the FOC-type strategy, both when using simple PI-type controllers or in the case of complex SMC or synergetic-type controllers, is achieved using the RL based on the Deep Deterministic Policy Gradient (DDPG). This improvement is obtained by using the correction signals provided by a trained reinforcement learning agent, which is added to the control signals ud, uq, and iqref. A speed observer is also implemented for estimating the PMSM rotor speed. The PMSM control structures are presented using the FOC-type strategy, both in the case of simple PI-type controllers and complex SMC or synergetic-type controllers, and numerical simulations performed in the MATLAB/Simulink environment show the improvements in the performance of the PMSM control system, even under conditions of parametric uncertainties, by using the RL-DDPG

    Improvement of the Control of a Grid Connected Photovoltaic System Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent

    No full text
    This article presents the control of a grid connected PV (GC-PV) array system, starting from a benchmark. The control structure used in this article was a cascade-type structure, in which PI or synergetic (SYN) controllers were used for the inner control loop of id and iq currents and PI or sliding mode control (SMC) controllers were used for the outer control loop of the udc voltage from the DC intermediate circuit. This paper presents the mathematical model of the PV array together with the main component blocks: simulated inputs for the PV array; the PV array itself; the MPPT algorithm; the DC-DC boost converter; the voltage and current measurements for the DC intermediate circuit; the load and connection to power grid; the DC-AC converter; and the power grid. It also presents the stages of building and training the reinforcement learning (RL) agent. To improve the performance of the control system for the GC-PV array system without using controllers with a more complicated mathematical description, the advantages provided by the RL agent on process controls could also be used. This technique does not require exact knowledge of the mathematical model of the controlled system or the type of uncertainties. The improvement in the control system performance for the GC-PV array system, both when using simple PI-type controllers or complex SMC- and SYN-type controllers, was achieved using an RL agent based on the Deep Deterministic Policy Gradient (DDPG). The variant of DDPG used in this study was the Twin-Delayed (TD3). The improvement in performance of the control system were obtained by using the correction command signals provided by the trained RL agent, which were added to the command signals ud, uq and idref. The parametric robustness of the proposed control system based on SMC and SYN controllers for the GC-PV array system was proven in the case of a variation of 30% caused by the three-phase load. Moreover, the results of the numerical simulations are shown comparatively and the validation of the synthesis of the proposed control system was obtained. This was achieved by comparing the proposed system with a software benchmark for the control of a GC-PV array system performed in MATLAB Simulink. The numerical simulations proved the superiority of the performance of control systems that use the RL-TD3 agent

    Sensorless Control of PMSM Based on Backstepping-PSO-Type Controller and ESO-Type Observer Using Real-Time Hardware

    No full text
    In the case of using a Permanent Magnet Synchronous Motor (PMSM) linear model of limited-range parametric variations and of relatively low dynamic of the load torque, the Field Oriented Control (FOC) type strategy ensures good performance of the PMSM control. Therefore, when using a non-linear model of wide-range parametric variations and of high dynamic of the load torque, a backstepping-type controller is proposed, whose tuning parameters are optimized by using a Particle Swarm Optimization (PSO) method. By designing an Extended State Observer (ESO), which provides a good estimate of the PMSM rotor position and speed under uncertainty conditions and with a response time shorter than that of the backstepping-type controller, this observer can be incorporated into the PMSM sensorless control system. The superior performance of the proposed sensorless control system based on the backstepping-PSO-type controller and an ESO-type observer is demonstrated through numerical simulations. Given that the real-time implementation of the control algorithms and observers in an embedded system is a difficult task, consisting of several steps, it is presented after the numerical simulations, which can be assimilated into the Software-in-the-Loop (SIL) step, the Processor-in-the-Loop (PIL) intermediate step, and the Hardware-in-the-Loop (HIL) final step. A comparison between the backstepping-PSO-type controller and the PI-PSO-type controller is presented by means of the real-time implementation of these controllers and demonstrates the superiority of the backstepping-PSO-type controller

    Malignant Bone Tumors Diagnosis Using Magnetic Resonance Imaging Based on Deep Learning Algorithms

    No full text
    Background and Objectives: Malignant bone tumors represent a major problem due to their aggressiveness and low survival rate. One of the determining factors for improving vital and functional prognosis is the shortening of the time between the onset of symptoms and the moment when treatment starts. The objective of the study is to predict the malignancy of a bone tumor from magnetic resonance imaging (MRI) using deep learning algorithms. Materials and Methods: The cohort contained 23 patients in the study (14 women and 9 men with ages between 15 and 80). Two pretrained ResNet50 image classifiers are used to classify T1 and T2 weighted MRI scans. To predict the malignancy of a tumor, a clinical model is used. The model is a feed forward neural network whose inputs are patient clinical data and the output values of T1 and T2 classifiers. Results: For the training step, the accuracies of 93.67% for the T1 classifier and 86.67% for the T2 classifier were obtained. In validation, both classifiers obtained 95.00% accuracy. The clinical model had an accuracy of 80.84% for training phase and 80.56% for validation. The receiver operating characteristic curve (ROC) of the clinical model shows that the algorithm can perform class separation. Conclusions: The proposed method is based on pretrained deep learning classifiers which do not require a manual segmentation of the MRI images. These algorithms can be used to predict the malignancy of a tumor and on the other hand can shorten the time of their diagnosis and treatment process. While the proposed method requires minimal intervention from an imagist, it needs to be tested on a larger cohort of patients

    Control of PMSM Based on Switched Systems and Field-Oriented Control Strategy

    No full text
    Starting from the problem of studying the parametric robustness in the case of the control of a permanent magnet-synchronous motor (PMSM), although robust control systems correspond entirely to this problem, due to the complexity of the algorithms of the robust type, in this article the use of switched systems theory is proposed as a study option, given the fact that these types of systems are suitable both for the study of systems with variable structure and for systems with significant parametric variation under conditions of lower complexity of the control algorithms. The study begins by linearizing a PMSM model at a static operating point and continues with a systematic presentation of the basic elements and concepts concerning the stability of switched systems by applying these concepts to the control system of a PMSM based on the field-oriented control (FOC) strategy, which usually changes the value of its parameters during operation (stator resistance Rs, stator inductances Ld and Lq, but also combined inertia of PMSM rotor and load J). The numerical simulations performed in Simulink validate the fact that, for parametric variations of the PMSM structure, the PMSM control switched systems preserve qualitative performance in terms of its control. A series of Matlab programs are presented based on the YALMIP toolbox to obtain Pi matrices, by solving Lyapunov–Metzler type inequalities, and using dwell time to demonstrate stability, as well as the qualitative study of the performance of PMSM control switched systems by presenting in phase plane and state space analysis of the evolution of state vectors: ω PMSM rotor speed, iq current, and id current
    corecore